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Abstract: Error correction codes are used in semiconductor memories to protect information against soft 

errors. Soft errors are a major concern for memory reliability especially for memories that are used in space 

applications. In such cases, to protect the data from soft errors, simple error correction codes are preferred due 

to their simple encoding/decoding logic, low redundancy and low encoding/decoding latency. Hamming codes 

are attractive as they are simple to construct for any word length and the encoding/decoding can be done with 

low delay. But they only allow single error correction or double error detection, so a multiple error can lead to 

a wrong decoding. Nowadays multiple errors are becoming more frequent as integration scale increases. 

Multiple errors occurs mainly to adjacent bits. In this paper modified Hamming code that can correct single 

errors, double-adjacent errors, triple-adjacent errors and double-almost-adjacent errors is presented. The 

double and triple adjacent errors are precisely the types of errors that an MCU would likely cause, and 

therefore, the modified Hamming code will be useful to provide MCU tolerant memories. 
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I.     Introduction 
The theory of error detecting and correcting codes is that branch of engineering and mathematics which 

deals with the reliable transmission and storage of data. Information media are not 100% reliable in practice, in 

the sense that any radiations or noise (any form of interference) frequently causes data to be distorted. To deal 

with this undesirable but inevitable situation, some form of redundancy is incorporated in the original data.With 

this redundancy, even if errors are introduced (up to some tolerance level), the original information can be 

recovered, or at least the presence of errors can be detected. 

For memories that are used in radiation environments especially those that are used in space 

applications the main cause of error is the radiation induced soft error [1]. The radiation induced soft error 

occurs when a radiation particle hits the device and changes the logic value. Error Correction Codes (ECCs) are 

used to prevent soft errors from causing data corruption in memories and registers [2], [3]. The codes used range 

from simple codes such as Hamming codes [4] to more powerful and complex codes like Bose–Chaudhuri– 

Hocquenghem (BCH) codes, matrix codes and Euclidean Geometry (EG) codes [5], [6], [7]. In all cases, the 

data is encoded when it is written into the memory and decoded when it is read. Therefore, the encoding and 

decoding latency directly impact the memory access time. To minimize this effect ECCs for which decoding is 

simple are used in most cases. One example of codes for which decoding can be done with low delay is Single 

Error Correction (SEC) codes. Hamming codes are Single error correction codes. Hamming codes are attractive 

as they are simple to construct for any word length and the encoding and decoding can be done with low delay. 

.SEC codes have a minimum distance of three and therefore a double error can be mistaken for a single 

error and erroneously corrected. To avoid this issue Single Error Correction Double Error Detection (SEC-

DED) codes are preferred in memory applications [2], these codes have a minimum distance of four. Hamming 

codes can be extended with a parity bit covering all bits to implement a SEC-DED code [4]. Therefore, they are 

suitable for memory applications and also to protect registers in digital circuits. 

A SEC-DED code [4] is capable of correcting one error and detecting all possible double errors. It is 

commonly used in memories and caches, but cannot correct more than a 1-bit error in a word. As technology 

scales, it is more likely that a radiation particle upsets more than one memory cell or register causing multiple 

errors [9]. This is known as a Multiple Cell Upset [10]. Recent studies characterizing different bit errors arising 

from an SEU suggest that 1–5% of the SEUs can cause multiple bit upsets (MBUs) [8]. The cells affected by the 

MCU are physically close and in many cases adjacent [11]. This is because errors are created along the path that 

the particle traverses. MCUs can therefore cause multiple errors on a given word causing a failure even when a 

SEC-DED code is used. 

In order to correct the most commonly occurring MBUs, this paper proposes a low cost ECC 

methodology to correct single errors, double adjacent bit errors, triple adjacent errors and double almost 
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adjacent errors. The proposed methodology introduces small area, power and delay overheads. 

The rest of the paper is organized as follows section 2 presents related work. In section 3 an overview 

of Hamming codes is presented. Section 4 describes the proposed code and in Section 5 the simulation results 

are presented. Section 6 provides the conclusion of the paper 

 

II.      Related Work 
A number of approaches for extending the basic SEC-DED Hamming code [4] have been previously 

proposed. A special class of SEC-DED codes known as Hsiao codes [12] was proposed to improve the speed, 

cost, and reliability of the decoding logic. The codes constructed in the proposed methodology can be thought of 

as a special class of Hsiao codes. Another class of SEC-DED codes [13], [14] was proposed to detect any 

number of errors affecting a single byte. These codes are known as single-error-correcting double-error-

detecting single-byte-error-detecting (SEC-DED- SBD) codes. For protecting byte-organized memories, SEC-

DED-SBD codes are more suitable than the conventional SEC-DED code. 

To provide complete double error correction capability, a double-error-correcting triple-error-detecting 

(DEC-TED) code may be used at the cost of much larger overhead in terms of both the check bits and more 

complex hardware to implement the error correction and detection [15], [16], [17]. 

The Reed-Solomon (RS) code and Bose-Chaudhuri- Hocquenghem (BCH) codes are able to detect and 

correct multiple bytes of errors with very low overhead in terms of additional check bits required. However, 

these codes typically work at the block level and are applied to multiple words at a time. The general drawbacks 

with these methods are latency and speed. Most of these codes require several cycles to correct the first error. 

Moreover, the encoding and decoding are much more complex and require several table lookups for 

multiplication in higher order fields. 

Another class of multiple error-correcting approaches combines coding with circuit level techniques to 

sense multiple errors in a memory. In [18] and [19], an asynchronous built in current sensor (BICS) on the 

vertical power lines of a memory along with a parity bit per memory word is used. A conventional SEC-DED 

code and the BICS approach are combined in [20] to detect multiple bit upsets affecting the same memory word. 

Even though several powerful error correcting codes exist, the SEC-DED code has remained an 

attractive choice mainly because of its fast and simple encoding/ decoding and low hardware overhead. One of 

the most commonly used techniques to minimize the probability of multiple bit upsets in a single word is bit 

interleaving which is a memory layout architecture in which physically adjacent bits are assigned to different 

logical words. For k-way interleaving, k adjacent failing bits appear as k single bit errors in k different logical 

words rather than as a k-bit error in a single logical word. A simple SEC-DED code can be used along with bit 

interleaving to help protect from multiple bit upsets. However, there can be some limitations/drawbacks for bit 

interleaving. In some cases, it may negatively impact floor planning, access time, and/or power consumption. 

The proposed code based on [21] introduces very little overheads in terms of area, power and delay and can be 

used instead of or in addition to bit interleaving to provide greater flexibility for optimizing a memory design. 

 

III.     Hamming Codes 
Hamming codes are linear block error-correcting codes that were proposed by R.W. Hamming [4]. 

They provide single error correction or double error detection. For any positive integer m ≥ 3 they have the 

following parameters : 

 

n = 2
m
 – 1; k = n – m; dmin = 3 (1) 

 

where n is the block size, m the parity check bits, k the number of information bits and dmin the minimum 

distance of the code. The parity bits are organized in a special way so different incorrect bits produce different 

error results when decoding. Some possible values of the parameters are illustrated in Table I. For memory 

applications, the number of information bits k is commonly a power of two and Hamming codes are shortened 

to fit that word length as illustrated in Table II. 
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Hamming codes are linear codes and, consequently, can be generated and decoded using the generator and 

parity-check matrices, respectively. These matrices have a canonical form, but also equivalent non-systematic 

code matrices can be obtained by column permutations and other row operations. 

 

An algorithm to generate Hamming code words from information bits is as follows: 

 

a) positions are numbered from 1 to n; 

b) positions are written in their binary form (1, 10, 11, etc.); 

c) bits in positions 2r are parity bits for those other positions where the binary form of those positions has 

the bit r + 1 set to one. 

 

For instance, in the Hamming code (7,4) with n = 7, k = 4 and m = 3, positions c1, c2 and c4 are parity bits (p1, 

p2 and p3) and the information bits (d1, d2, d3 and d4) are placed in order in the rest of positions as shown in 

Table III. 

 

TABLE III 

Generation algorithm for Hamming Code (7,4) 

Position c1 c2 c3 c4 c5 c6 c7 

        

Binary 001 010 011 100 101 110 111 

        

Content p1 p2 d1 p3 d2 d3 d4 

        

c1 (p1) --  011  101  111 

        

c2 (p2)  -- 011   110 111 

        

c3 (p3)    -- 101 110 111 

        

 

Parity bits are calculated as follows: 

 

c1 = c3 ^ c5 ^ c7 or p1 = d1 ^ d2 ^ d4 

 

c2 = c3 ^ c6 ^ c7 or p2 = d1 ^ d3 ^ d4 

 

c4 = c5 ^ c6 ^ c7 or p3 = d2 ^ d3 ^ d4 

 

As an example, with this scheme the code word for data bits (1 0 1 0) is (1 0 1 1 0 1 0). This approach can be 

represented as a non-canonical generator matrix where rows are relocated to place the bits in the appropriate 
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position. 

In order to check the code word, the parity bits can be recalculated again from the information bits and 

compared to the original set of parity bits. If they match, then no error was introduced (or it is not detected), 

otherwise, an error is detected and the non-matching parity bits can provide us with the information of the bit 

that was flipped so that the error can be corrected. 

From a linear algebra approach, the parity-check matrix can be used to detect an error. The product of 

this matrix by the current value of the code word results in a vector called syndrome. If this vector is the null 

vector, then the current value of the word is an actual code word. In any other case, an error occurred in the code 

word. 

There is a special parity-check matrix where column i contains the binary representation of i. It is 

called the lexicographic check matrix. The lexicographic matrix for the shortened Hamming code (12, 8) is 

shown in (2) 

 

 

 

 

 

 

 

(2) 

 

If a single bit error occurs in the code word, the syndrome vector that results from the product of the 

lexicographic matrix with the error code word gives the binary representation of the position where the error 

was inserted. Using as an example Hamming code (12, 8), data bits (01010100) are coded as (000010110100). 

When an error occurs and, for instance, the third bit is changed the code word turns into (001010110100). The 

product of this vector by the lexicographic check matrix results in the syndrome vector (1100) corresponding to 

the binary representation of three. 

A Hamming code can be used to correct single errors or, alternatively, to detect single and double 

errors. As the minimum distance between two words is three, it is not possible to distinguish between single and 

double errors. Coming back to the previous example, if there is a double error in the original word in positions 3 

and 4 we get the vector (001110110100). Syndrome in this case is (1110) corresponding to the binary 

representation of 7. In this case, code word would be corrected into (001110010100) instead of the right word. 

An option is to use an extended version of the Hamming code that includes an additional parity bit that 

covers all the bits in the code word. This solution increases the minimum distance to four and allows performing 

single error correction and double error detection (SEC-DED) simultaneously. Alternatively, it can be used to 

detect triple errors. In this case, the extended Hamming code (13, 8) encodes (01010100) into (0000101101000). 

The double error in positions 3 and 4 turns the code word into (0011101101000). This produces a no zero valid 

syndrome with no error in the parity bit. Therefore, a double error is detected and no correction is done since 

single errors have a valid syndrome and error in the parity bit.With a minimum distance of 4, a triple error in the 

extended Hamming code can be miscorrected. In the previous example, errors in bits 3, 4 and 7 produce a zero 

syndrome and error in the parity bit. This would be interpreted as a single error in the parity bit and 

miscorrected. 

 

IV. Proposed Code 
The characteristics of a linear block code are completely determined by its H-matrix. The proposed 

code has the following properties: 

 

1) All single bit errors can be corrected. 

2) All adjacent double bit errors can be corrected. 

3) All triple adjacent bit errors can be corrected. 

4) All double almost adjacent bit errors can be corrected. 

 

The following error correction code analysis is based on [21]. Consider a code with k data bits and c check bits. 

The code can represent 2
k
 binary values. The code word contains k+c bit positions that could have a single error, 

k+c-1 bit positions for double adjacent bit error, k+c-2 bit positions for triple adjacent bit error and k+c-2 bit 
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positions for double-almost-adjacent bit error respectively. Including the set of correct values, there are (k+c) + 

(k+c-1) + ( k+c-2) + ( k+c-2)+1 sets of 2
k
 binary values that must be represented in the k+c bit code word. This 

implies 

 

2
k
 (k+c+k+c-1+k+c-2+k+c-2+1)  ≤ 2

k+c
 (3) 

 

Eliminating the common term from both sides of (3), the following relationship can be derived. 

 

k+c-1  ≤  2 
c-2

 (4) 

 

where c (the number of check bits) should be minimized to reduce the code length. 

Given 16 data bits (d0–d15), the minimal number of check bits should be 7 according to (4). Supposing that 

check bits are c0–c6 and the 23-bit code word is d0–d15c0–c6, the following equations are used to correct a 

single error, a double-adjacent error, a triple-adjacent error or a double-almost-adjacent error. 

 

d0 ^ d3 ^ d4 ^ d5 ^ d8 ^ d12 ^ d13 ^ c0 = r0 

 

d1 ^ d4 ^ d7 ^ d8 ^ d11 ^ d13 ^ d14 ^ c1 = r1 

 

d2 ^ d5 ^ d6 ^ d9 ^ d10 ^ d11 ^ d14 ^ c2 = r2 

 

d0 ^ d4 ^ d9 ^ d12 ^ d15 ^ c3 = r3 

 

d1 ^ d5 ^ d8 ^ d10 ^ d11 ^ d12 ^ d14 ^ c4 = r4 

 

d2 ^ d7 ^ d9 ^ d10 ^ d11 ^ d12 ^ d15 ^ c5 = r5 

 

d3 ^ d6 ^ d8 ^ d11 ^ d12 ^ d13 ^ d15 ^ c6 = r6 (5) 

 

where ^ represents XOR and c0–c6 are set to make r0–r6 equal to zero under fault-free conditions. Eq. 

 

(5) can be transformed into a matrix form as shown in (6) , where the leftmost matrix is called check matrix 

(Hamming matrix) that determines which data bits and check bits are XORed, and the rightmost row vector [r0– 

r6] is a syndrome that is a zero vector under fault-free conditions and a non-zero vector under faulty conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(6) 
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Table IV provides syndromes [r0–r6] that correspond to single errors, double-adjacent errors, triple-adjacent 

errors or double almost-adjacent errors according to (5) or (6). In Table IV, x represents a single error in bit 

position x, (x, x+1 ) represents a double-adjacent error in bit positions x and x+1 , (x, x+2 ) represents a double-

almost-adjacent error in bit positions x and x+2, and (x, x+1, x+2 ) represents a triple-adjacent error in bit 

positions x, x+1 and x+2 . As seen from Table IV, a single error in bit position x generates a syndrome that 

matches the x
th

 column in the check matrix. For example, a single error in bit d0 generates a syndrome 

[1001000] that matches the first column in the check matrix (see (6)). A single error in bit d1 generates a 

syndrome [0100100] that matches the second column in the check matrix. A double-adjacent error in bit 

positions x and x+1 generates a syndrome that matches the XOR of x
th

 and x+1 
th

 columns in the check matrix. 

For example, a double-adjacent error in bits d0 and d1 generates a syndrome [1101100] that matches the XOR 

of the first and the second columns in the check matrix. As seen from Table IV, a double-almost-adjacent error 

in bit positions x and x+2 generates a syndrome that matches the XOR of the x
th

 and x+2 
th

 columns in the check 

matrix. For example, a double-almost-adjacent error in bits d0 and d2 generates a syndrome [1011010] that 

matches the XOR of the first and the third columns in the check matrix. A triple-adjacent error in bit positions x, 

x+1 and x+2 generates a syndrome that matches the XOR of the x 
th

, x+1 
th

 and x+2 
th

 columns in the check 

matrix. For example, a triple-adjacent error in bits d0, d1 and d2 generates a syndrome [1111110] that matches 

the XOR of the first, the second and the third columns in the check matrix. 

As seen from Table IV, the syndromes for single, double and triple errors are unique with respect to 

each other in order to correct these errors. Therefore, in the check matrix (in (4)), the individual columns, the 

XOR of double adjacent columns, the XOR of double-almost-adjacent columns, and the XOR of triple adjacent 

columns are also unique with respect to each other. Additionally, in the check matrix, the 17th to 23rd columns 

that correspond to check bits c0–c6 (i.e. the syndromes for single errors in check bits) are one-hot codes such as 

[1000000]
T
, [0100000]

T
 ,…. [0000001]

T
 . 

 

Hence the proposed scheme is performed using an exhaustive search algorithm as follows. 

 

At step 1, given k data bits , the minimal number of check bits c is obtained according to (2). Supposing check 

bits are c0 – c c-1 and the code word is d0 – d k-1 c0 – c c-1 ,the check matrix is a matrix with c rows and k+c 

columns, where the last c columns corresponding to check bits c0 – c c-1 are set to one-hot codes [1000000]
T
, 

[0100000]
T
 ,…. [0000001]

T
 respectively. 

 

TABLE IV 

Syndromes for determining Single, Double and Triple errors 

Faulty Syndromes for single, double and triple errors 

Bit Single Double Triple 

X X x, x+1 x, x+2 x, x+1, 

    x+2 

d0 1001000 1101100 1011010 1111110 

d1 0100100 0110110 1100101 1110111 

d2 0010010 1010011 1111010 0111011 

d3 1000001 0101001 0010101 1111101 

d4 1101000 0111100 1111001 0101101 

d5 1010100 1000101 1110110 1100111 

d6 0010001 0110011 1110101 1010111 

d7 0100010 1000110 0111001 1011101 

d8 1100100 1111111 1110010 1101001 

d9 0011011 0001101 0101100 0111010 

d10 0010110 0100001 1011001 1101110 

d11 0110111 1111000 1010110 0011001 

d12 1001111 0101110 1111011 0011010 

d13 1100001 1010101 1101010 1011110 

d14 0110100 0111111 1110100 1111111 
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d15 0001011 1001011 0101011 1101011 

c0 1000000 1100000 1010000 1110000 

c1 0100000 0110000 0101000 0111000 

c2 0010000 0011000 0010100 0011100 

c3 0001000 0001100 0001010 0001110 

c4 0000100 0000110 0000101 0000111 

c5 0000010 0000011 - - 

c6 0000001 - - - 

 

At step 2, the available column value set is initialized with all possible column values except for zero. The c 

one-hot codes( [1000000]
T
, [0100000]

T
 ,…. [0000001]

T
 ) are removed from the available column value set 

because they have been used by the columns for check bits. In the columns for check bits, the XOR of double 

adjacent columns, the XOR of double almost adjacent columns, and the XOR of triple-adjacent columns are also 

removed from the available column value set. 

At step 3, the remaining empty columns of the check matrix are filled sequentially. An empty column 

is filled with a valid column value in the available column value set. The valid column value should ensure that 

no duplicate values exist for individual filled columns (i.e. the syndromes for single errors), the XOR of two 

adjacent filled columns (i.e. the syndromes for double-adjacent errors), the XOR of two almost-adjacent filled 

columns (i.e. the syndromes for double-almost-adjacent errors), and the XOR of three adjacent filled columns 

(i.e. the syndromes for triple-adjacent errors). So the valid column value can ensure that the syndromes for 

single, double and triple errors are unique with respect to each other and hence these errors are correctable. Then 

this column value, the XOR of double-adjacent filled columns, the XOR of double-almost-adjacent filled 

columns and the XOR of triple-adjacent filled columns are all removed from the available column value set. 

When an empty column cannot find a valid value in the available column value set, a backtracking is performed 

on neighbouring columns one by one by returning removed values to the available column value set and 

replacing the filled columns with different valid values. The backtracking may help this empty column find a 

valid value. 

At step 4, if the check matrix is completely filled, the search algorithm may end, or go back to step 3 to 

continue looking for a better solution by filling columns with different valid values. 

 

V.      Fpga Implementation And Simulation Results 
The code for the proposed Hamming code was written in Verilog Hardware Description Language and 

the code was simulated on ModelSim SE 6.3f for a 16 bit data. It was tested for correct functionality by giving 

various inputs. The proposed code is synthesized on Xilinx 13.3 version and has been implemented on Spartan 

3E FPGA kit. The simulation results of the encoder and decoder section of the proposed code is shown in Fig. 1 

and Fig. 2. The input to the encoder is a 16 bit data and the output is a 23 bit code word. The 23 bit code word is 

the input to the decoder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Simulation result for encoder of the proposed code 
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Fig. 2. Simulation result for decoder of the proposed code 

 

VI.         Conclusion 
The proposed code described in this paper has the ability to correct single error, double adjacent errors, 

double almost adjacent errors and triple adjacent errors. The proposed scheme will correct upsets for up to 3 bits 

as long as they are within a span of 3 bits . The main drawback is that it will not correct even a double bit upset 

if the two bits occur outside that range. Further, with this scheme there is no way to detect a non-correctable 

double bit upset. The proposed methodology is flexible and can be used for the correction of adjacent errors 

which are the ones usually caused by Multiple Cell Upsets (MCUs) in semiconductor memories. 
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